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A GENERALTOPOLOGY,GODUNOV METHOD

by
Frank Addessio, Michael Cline, and John Dukowicz
Theoretical Division, Group T-3

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

A numerical technique that utilizes a general topology mesh is described. The
method employs the arbitrary Lagrangian-Eulerian procedure and explicit, finite-
volume, Godunov numerics. Material interfaces are resolved to eliminate fictitious mix-
ing and nonphysical shear impedance. Cell-centered variables, including velocity, are
used to provide consistent control volumes for the advection of mass, momentum, and
energy, and to allow arbitrary slip between material regions,

The computational mesh is composed of arbitrary polygonal cells. The constraint of
a fixed logical connectivity for the mesh is removed. Consequently, geometrical mesh
limitations, which are responsible for inaccuracies and code failure during the evolution
of region boundaries, are absent. Arbitrary boundaries can be resolved, and the mesh is
capable of changing smoothly and rapidly from regions of high to low resoluuon. Lack of
a coherent mesh orientation minimizes numerical anisotropy. A mesh rezoning ap-
proach, based on a dual triangulation and coupled with a global remapping algorithm,

allows the mesh to evolve dynamically,

1. INTRODUCTION

Historically, the investigntions of materials experiencing lurge deformations have
used cither an Eulerian or o Lagrangion description of the materinl motjon. Kulerian
methods are robust and well suited o model the evolution of irregular surfaces, the

creation of fragments, and the description of phase changes, for example. However, the



continual remapping or advection of material properties, that is characteristic of an
Eulerian description, is inherently inaccurate. Concern for accuracy is augmented when
multiple materials are allowed to coexist within a computational cell. Because large
changes in physical properties and discontinuities of dynamic variables are character-
istic of material interfaces, their description in a mixed cell context requires either an
interface reconstruction or trarking scheme. Excessive numerical diffusion, additional
complication, and computational expense are incurred using this approach.

A purely Lagrangian formulation is computationally expeditious and accurate.
However, Lagrangian methods are fragile. Problems involving large material deforma-
tions produce excessively distorted computational meshes, resulting in the failure of the
numerical algorithm. Thisdifficulty is mitigated by applying a Lagrangian formulation
to the interfaces but allowing relative motion between the material and the computation-
al mesh on the interior. However, if the computational mesh is constructed with logically
fixed--connectivity cells, the evolution of the mesh topology is prescribed by the motion of
the boundaries. Consequently, the evolution of regions of large boundary curvature may
produce cells wit!" large aspect ratios or small characteristic dimensions, which are inac-
curate and impose severe time step constraints,

The utilization of arbitrary polygonal cells that lack logical connectivity is explored
for solutions to material deformation problems. This approach offers the ability to re
solve irregular computional regions accurately and dynamically, A twu-dimersional
method using a finite-volume, Godunov approach is described. The method, CAVEA'T-

GT, is n general topology extension to the fixed-connectivity computer code CAVEAT [ 1],
2. MESHGEOMETRY

The computational domain modeled by the CAVEA'T.GT algerithm is divided into
avnoverlupping, closed regions. Bach region, typically, is assceinted with a specific mate

rinl, Boundaries nlong which regions interact are referred Lo as interfaces. Associnted



with each region is an underlying triangulation, which is used to construct the computa
tionai cells, define the mesh topology (connectivity), and describe the associated data
structure. The computational cells define the control volumes used by the finite-volume
formulation of the governing equations. It is from these nonoverlapping, closed, arbi-
trarily shaped, polygonal cells that CAVEAT-GT derives its flexibility Interior
computational ceils are defined by vertices that are the centroids of the underlying
triangles (cf., Fig. 1). Therefore, there is a cell associated with each triangle vertex. Cells
lying adjacent to boundaries also are defined by cell vertices interior to a region. Along
the boundary, however, a point lying half way between the cell points is used to define
the extent of the boundary cell. Such puints are referred to as ooundary points (cf., Fig.
1). Boundaries are constructed with linear segments defined by the cell points lying on
the boundaries. Boundary segments and points that lie on the interfaces separating
regions are doubly defined.

In general, calculational quantities are associated with one of three locations on a
computational cell. Primary-extensive as well as the primary-intensive properties
derived from them, are associated with the cell centroids. The solution of the Riemann
problem and remapping also require intensive quantities on cell sides. Finally, cell
vertex positions are stored.

“Fixed points" are defined as special boundary cell-points, Boundary cell-points
located where three regions adjoin ure referred to as triple points. The intersection of a
line of syminetry and » region boundary or two lines of symmetry are fixed symmetry
points, Finally, kinks or corners in the boundary contour may be defined as "fixed
points” by the user. During the computation, special consideration is provided to the
"fixed points” along the boundary to ensure that the interface construction algorithm
does not smooth the contour in their vicinity. The locations of "fixed points” are deter

mined prior to and remain fixed during the interface construction,



3. METHODOLOGY

CAVEAT-GT is a two-dimensional computer program written for either Cartesian
or cylindrical geometries. An arbitrary Lograngian-Kulerian (ALE) formulation is used
to advance the material state one full cycle. During the Lagrangian step, the material
state is advanced by obtaining solutions to the conservation equations applied to volumes
following the material motion. Boundary and interface positions also are updated during
this priase. Following the Lagrangian phase, a new mesh is generated. This step is the
rezoning phase. Finally, in the remapping step, the variables calculated in the
Lagrangian phase are transferred from their Lagrangian positions to the new mesh. In
CAVEAT-GT, there are two possible rezone/remap algorithms. They include an efficient
"near-Lagrangian” and a general global method. The global algorithms use the results of
the "near Lagrangian” methods as their starting values, Details of the three phases are
provided herein.

3.1. Lagrangian Phase

During the Lagrangian phase of the computation, the rates of change of volume,
mass, momentum, and energy are updated for computational volumes follewing the ma
terial motion. In the finite-volume context, the equations of volume, mass, momentum,

and total energy change are written
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and

/
= pl dV — —~ P*u*-n dS
dt v, S,

An equation of state is required to close this system of equations. V[ (t) is a Lagrangian
control volume (i.e., a computational cell) with the surface Sj,(t) and moving at the local
material velocity. The unit normal vector directed outward from the surface is n. The
operator d/dt is the Lagrangian (material) time derivative. The quantities p, e, P, and u
are the density, specific internal energy, pressure, and material velocity, respectively.
The specific total energy isE = e + }J u-u. An asterisk is used to denotc a cell-sided
quuntity.

Variables that specify the material state are stored at the centroids of the computa-
tional cells. This allows modeling gross material slip without the need to include a logi-

cal slideline. The accuracy of the mmethod depends on the assumed spatial variation of a

representative intensive quantity ¢(») about the cell centroid xi
dhix) = (p(xk) ¢ thp-(x - xk) t H(A.l?" (2)

The computational procedure is considered "first-order” if all quantities are assumed
constant within a computational cell, that is, ¢(x} = ¢(xk). The method is considered
“second-order"” if the gradient V¢ exists, that is, a linear varintion for the variable is
assumed within a cell. The calculation of the cell centered gradients (Vi}) includes
limiting to preserve monotonicity [ 1),

FEvaluation of the right-hand sides of Kq. (1) requires the pressure (P*) and the

normal velocity (w* = u*: n) on the control surface, An extension of the Godunov meth



od, which sclves a local Riemann problem at the cell surface, is used. The left and right
states required by the Riemann solver are obtained from the cell-centroid quantities
using Eq. (2). An approximate Riemann solver[3]isused in CAVEAT-GT,

Solutions to the Riemann problem provide normal material velocities, w* =
(u*- n)n, on the cell sides. T'here is one Riemann velocity on each interior side and two
associated with the straight line segments located along the region boundaries. These
velocities are positioned mid-way between the cell point and the boundary point. Con-
sequently, a linear distribution of the normal velocity is implied for each boundary seg-
ment. The two boundary-segment velocities are used to construct wavefronts with radius
w*At, according to Huygens construction. The new boundary-segment position is speci-
fied by the points that lie on the tangent to the two waveironts.

The Huygens construction is used to advance the two boundary segments that inter-
sect at a "fixed point”. The new “fixed point” position ic the intersection of the advanced
positions of the neighboring segments. The construction results in three potential posi-
tions for triple points. This ambiguity is resolved by linearly combining the three posi-
tions using a density weighting.

Similarly, the new boundary-cell points could be determined by the intersections of
the new boundary segments. These intersections are not defined, however, when the seg-
ments are parallel or collinear. The solution to this dilemma is facilitated if the problem
is posed in a variational form

(CREEY w e dd ) ke D ow ik, -kt (3)
k m
where the sums are taken over boundary-cell points and sides, respectively. In Eq. (3),
dm k is the distance from the boundary points (xi) to the line segment m. The first term

defines a variutional problem for the intersection of two boundary segments. A varia



tional formulation including only this term is singuiar for parallel or collinear boundary
segments. Consequently, the second term in Eq. (3) is included to regularize the
variational problem. The function wy is chosen to decrease the contribution of the first
functivnal as the boundary segments approach parallelism. The weight wn is
constructed to equidistribute a “one-dimensional” mass distribution along parallel or
collinear bounaaries. The variation of this functional provides a system of equations for
the cell-point positions (xy).

3.2. Rezone Phase

During the rezoning phase of the CAVEAT-GT algorithm, the location of the new
mesh is determined. The positions of the boundary-cell points are determined first.
Then, the boundary point locations are used as boundary conditions for the algorithm
that provides the positions of the interior vertices. Both a “near-Lagrangian” and a
global rezone method are available for determining the boundary and interior locations.

Advancement of the interfaces and boundaries that enclose each region is accom-
plished by the interface construction technique (cf., Sec. 3.1). This construction uses the
velocities normal to the boundary segments to position the new boundary. Location of
the boundary-cell points tangentially along the boundary segments is arbitrary. Place-
ment of the boundary points along the segments that are obtained from the interface
construction is performed by the boundary rezone algorithm. The “near-Lagrangian”
placement locates the boundary points to preserve the original mass distribution along
the boundary segments, The associated advection across cell sides that intersect the
boundary is minimized.

The general topology mesh offers the ability to add computational cells in regions
demanding finer resolution and eliminating cells where they no longer are required
along the boundary. This is accomplished by calculating a point distribution parameter

N frem the ordinary differential equation



% = s, K, Ve, ) . (4)
The point-distribution density function (f) is chosen to distribute boundary points equally
along the interfaces in the absence of any distinguishing features. Otherwise, boundary
points are forced to migrate into regions with large values of the boundary curvature (k)
or the gradient (V¢) of a prescribed variable, such as pressure. Equation (4} is integrated
along boundary contours between “fixed points.” The resulting values for N(s) are scaled
to ensure that the final value for N(s = L) is an integer. That is, the positions of the
“fixed points” are not altered. The boundary points then are placed along the boundary
contour at positions where N(s) has integer values. Solutions for N(s) are obtained every
time-step. The solution is tested to determine if the existing boundary-point distribution
sufficiently resolves the boundary contour. If boundary point addition or deietion or
gross vertex migration is unnecessary, the boundary-point positions resulting from the
“near-Lagrangian” description are used. However, if the “near-Lagrangian” positions
are not adequate to resolve accurately the boundary contour, then the final positions of
the boundary points are specified by Eq. (4) and a global ezone of the interior mesh also
is required.

The interior rezone algorithms construct a mesh on the interior of each region. The
intenor mesh construction schemes require the boundary-point positions, obtained from
the boundary rezone computation, as boundary conditions. Both of the interior-rezone
algorithms manipulate the triangulation, rather than the computational mesh. If the
Lagrangian cell vertex positions were available, remapping the variables obtained from
the Lagrangian phase of the calculation would be unnecessary. Unfortunately, it is
possible to collapse small cell sides without substantially affecting the cell volume with a
purely Lagrangian description. The "near-Lagrangian” rezone approach attempts to

preserve the cell volumes produced by the material niotion and maintain a smooth mesh.



The “near-Lagrangian” mesh velocities (u,,) are obtained from the solution to the

equation
V?um = 1/vdvldt | (5)

where v is the specific Lagrangian volume. This formulation preserves Lagrangian
volumes.

If the computational mesh becomes sufficiently distorted, then a global-rezone
method is employed to produce a smooth mesh. A global rezone is invoked if solutions to
Eq. (8) produce triangles with negﬁtive areas or if an interior triangle contains an angle
less than 10 degrees. A global rezone also is performed when points are added or deleted
along the boundary, or there is gross boundary point migration. Similar to established
rezoning techniques [4], a variaticnal formulation using a composite functional, which
will produce desirable mesh characteristics, is used. The functional incorporated into the

CAVEAT-GT method is

I= N dd v di v d2) A va > d (6)
where the sums are taken over traingles and cell sides, respectively. The first term in Eq.
(C) provides a measure of the smoothness of the computational mesh. Aj is the triangle
area and d;j; is the length of the triangle side. A variational formulation composed only of
this first term attempts to produce equilateral triangles. However, the triangle areas
could be grossly disparate. The second term in Eq. (6) is included to mitigate this difficul-
ty. This functional is minimized when the lengths of the triangle sides (d,;) are equal.
Changes in the connectivity of the mesh are allowed during the iterative procedure used

to minimize Eq. (6). Pouint addition or deletion on the mesh interior is precluded.
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3.3. Remap Phase

Although the normal motion of the region boundsaries is Lagrangisan, the mesh mo-
tion tangent to the boundaries and on the interior differ from the material motion. Con-
sequently, it is necessary to remap the results of the Lagrangian phase onto the mesh
positions dictated by the rezoning algorithms. Remapping procedures introduce a ditfu-
sion error into the results. This error is reduced by increasing the order of accuracy of the
approach or reducing the relative difference between the material and mesh velocities.

If the difference between the material and mesh velocities is sufficiently small to
preclude violating the stability of the numerical technique, then the variables may be
advected to the new mesh. Advection, therefore, is appropriate when remapping to the
mesh generated by the “near-Lagrangian” rezoning technique. In the event that an
entirely new mech is generated, a global remap of the material variables is required.
Because the variables are remapped from the “near-Lagrangian” positions to the new
mesh, a global rezone/remap always is preceded by a “near-Lagrengian” rezone and
advection. The global remap contained in CAVEAT-GT is an extension of previously
developed methods for quadrilaterals 5]-[8] to the geometry of a general topology mesh.
A conservative transfer of the variables betweer: two meshes is obtained. There is no

restriction on either the mesh topology or the tiine-step size.

4. EXAMPLE PROBLEMS

Two test problems are presented to demonstrate the features of the general topology
formulation. A dimensionless set of units is used in the problem descriptions.

4.1. Blast Wave

'The blast wave problem is composed of one region with seven fixed boundaries (i.e.,
reflective boundary conditions) and 593 computational cells. The characteristic cell
dimension is approximately 0.08. Initially, the velocity, pressure, density, and snecific

internal energy are 0, 1 X 1010, 1, and 1.5 X 10 10, respectively. Att = 0, a source of



1

energy is applied to the cell located at x = y = 0.95. This computational cel! is assigned
the values of 20/3, 1, and 10 for the pressure, density, and specific internal energy,
respectively. A gamma-law gas equation-of-state with y = 5/3 is used.

As the calculation evolves, a wave emanates from the energy source. The “near-
Lagrangian” rezone algorithm concentrates cells in the vicinity of the wave. As cells are
compressed in the neighborhood of the wave, distorted triangles are generated. When
this occurs, a global rezone is serformed and a more regular mesh is genera‘ed. Mesh
geometries preceding and following a global rezone are provided in Fig, 2. It is observed,
that although a smoother mesh is produced, a region of smaller cells remains in the vicin-
ity of the wave, Pressure profiles preceding and following a global remap also are pro-
vided in Fig. 3 for a first-order calculation. The diffusion produced by the remapping is
evident.

4.2. Impact Problem

Consider a thin plate with dimensions 0.4 by 2.0, density or 8.9, and traveling at the
uniform velocity of -0.196 in the vertical direction. Att = 0 the plate encounters a rigid
wall. The impact problem is modeled using the general topology method and a fixed-
connectivity mesh with the identical Godunov numerics for comparison. Both meshes
use computational cells with a characteristic dimension of 0.1, The left and bottom
boundaries are reflective. The right and top boundaries are a free surface (P = 0) and a
specified velocity boundary (v = -0.196), respectively. A Chaplygin equation-of-state is

used

P o k"!( -~ = ) , WD

1 1
3 p

)

where k = 3.49and p, = 8.9,
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The mesh evolution for a second-urder, van Leer limited calculation using the
general-topology mesh is shown in Fig. 4. The ability of the technique to smoothly add
and delete computational cells along the boundaries is evident. For comparison, the late
time mesh for a seccnd-order, van Leer limited, fixed-conr.ectivity computation also is
provided in Fig. 5. The fixed-connectivity calculation also utilized a mesh rezoning
technique in an effort to maintain a regular mesh in the interior. The accuracy of this
latter calculation is suspect at later times as cel! aspect ratios become excessive. Both
calculations are explicit. Consequently, as the characteristic dimension of the mesh
decreases for the {ixed-coanectivity analysis, the time-step size decreases. Att = 7.5, the
time-step sizes are 2.4 X102 and 3.8 X 103 for the general-topclogy and fixed-
connectivity methods, respectively.

A steady-state, analytic solution is available for the impact problem [9]. ‘To simu-
late steady-state conditions, late time solutions for a plate with a width-to-height ratio of
0.5:7.5 are obtained. Initially, the plate is in uniform niotion with values of -i. and 1. for
the vertical velocity and density, respectively. The left and bottom boundaries are reflec
tive. The right boundary is a free surface and the top boundary is a specified velocity
boundary with v = -1.0. The initial mesh is composed of 512 computational cells with a
characteristic dimension of 0.1. A Chaplygin equation-of-state [¢f., £q. (7)) is used with k
= 3.49 and p, = 1.0.The results for a late time, second-order, van Leer limited

calculation is provided in Fig, 6.

5. CONCLUSIONS

A two-dimensional, general topology, Godunov method has been developed. The
use of general polygonal cells facilitates the dynamic resolution of problems involving
large material deformations. 'The formulation uses a Lagrangian description for
materinl boundaries. Consequently, an accurate boundary analysis that eliminates

ictitious shear impedance and intermateriul penetration results.
fictit hear imped d intermateriul tration result
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Future extensions of the numerical method are envisioned. The ability to add or
delete computational cells on the interior and the inclusion of a more general set of
boundary’ conditions is planned. Finally, because the existing code is used for an experi
mental investigation, no attempt has been made to develop a fast version, alihough

optimizing and vectorizing of the coding is possible.
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Mesh Geometry (--- triangulation, — cell, o cell point, UIcell vertex, A boundary
point).

Mesh Geometry (a) Preceding and (b) Following a Global Rezone for the Blast
Wave Problem.

Pressure Profiles (a) Preceding and (b} Following a Global Rezone for the Blast
Wave Problem,

Mesh Evolution of the Impuct Problem for the General Topology Method at
(a) t=2.0and(b) t = 7.5.

Mesh Geometry of the Impact Problem for the Fixed-Connectivity Method at
t=7.5.

Cemparison of the (a) Density and (b) Velocity for the Steady-State, Impact

Problem along the Impact Plane (-- analytic and o computational result).
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